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Abstract. We consider the dynamics governing the evolution of a many body system constrained by a
nonabelian local symmetry. We obtain explicit forms of the global macroscopic condition assuring that at
the microscopic level the evolution respects the overall symmetry constraint. We demonstrate the constraint
mechanisms for the case of SU(2) system comprising particles in fundamental, and adjoint representations
(‘nucleons’ and ‘pions’).

1 Introduction and overview

The consideration of the influence of internal symmetries
on the final state of a many body system begun with the
pioneering work of Bethe [1]. Much of the subsequent in-
terest in the subject arises from the realization that in the
study of hadronic interactions and in particular in stud-
ies involving quark confinement, these constraints may be
of decisive importance. An important progress in treating
equilibrium systems was made employing group projec-
tion techniques. This allowed for a consistent treatment
of abelian [2] and nonabelian [3–7] symmetries of compact
groups and a consistent formulation of thermodynamics
of many particle systems with internal symmetries taken
into account [8,9]. Application of these methods to spe-
cific processes demonstrated in which circumstances the
presence of symmetry is of physical relevance [10–12].

However, it is not fully understood how the symmetry-
modified properties of the equilibrium system arise from
kinetic formulation of the dynamical evolution. When an
internal symmetry is not at work, Boltzmann’s H–theorem
in principle assures that the statistical Bose/Fermi/
Boltzmann distributions are the asymptotic (equilibrium)
distributions, irrespective of the nature of microscopic in-
teraction. However, in presence of exact symmetries the
equilibrium distributions are modified, see e.g. [9,11]. This
implies that symmetry constraints introduce effective in-
teractions of potentially far more complex nature than
is the usual two body Boltzmann collision term. In fact it
can be argued that quantum symmetry constraints are the
heart of the nonlocality of quantum physics. However, in
the limit of classical Boltzmann equation evolution these
are implemented by a strictly local (though non-linear)
consideration of Fermi blocking and Bose enhancement in
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phase space evolution. Our aim in this work is to make
a step towards understanding how the microscopic non-
abelian symmetry constrains operate within the kinetic
master equation description of the time evolution, leading
on to the symmetry modified (constrained) macroscopic
many particle equilibrium state.

It is first important to convince oneself that an un-
derlying symmetry of microscopic interactions does not
lead in general to the desired symmetry properties of a
(macroscopic) many body interacting system. To do this,
we consider the high energy nuclear (heavy ion) collisions
and specifically here two symmetry examples:

a) SU(2) Isospin symmetry: The initial state transforms
under a given representation of the isospin SU(2) group.
All elementary high energy interactions are governed by
the strong interaction, which preserves the isotopic sym-
metry. A final state results as a multiparticle state formed
by many individual hadron – hadron collisions. In any
of such microprocesses the isospin is conserved. However,
proceeding ‘as usual’ without symmetry constrained treat-
ment of local interactions does not assure that the fi-
nal multiparticle state (macrostate) transforms under the
same representation of the isospin group as the initial
state, which is required for symmetry reasons.

b) SU(3) Colour symmetry: A similar situation appears
in the context of the quark-gluon interactions, especially
in case that local deconfinement occurs. The initial state
is a colour singlet state, and quark-gluon and gluon-gluon
interaction, although invariant under the colour SU(3)c
symmetry group do not assure that during its evolution a
(macroscopic) many particle state, once a singlet, always
remains a singlet colour state, which, however, it must do
because of exact colour symmetry of strong interactions.
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As these examples show, in a dynamical (quantum)
transport theory description of the approach to equilib-
rium there must exist a subsidiary condition which should
be taken into account by corresponding kinetic equations
governing the evolution. This condition is independent
from other constraints related to dynamical gauged in-
ternal symmetries. For classical fluid dynamics a dynam-
ical evolution equation addressing gauge symmetry has
been proposed by Wong [13]. In many current studies of
the dynamics of classical non-abelian fields this proposal
continues till today to attract considerable interest [14].
However, these are constraints which have no relation to
the intrinsic non-locality of the quantum system which we
address here.

We first note that in the case of an abelian symmetry
there are no additional constraints to consider. Quantum
number conservation on a microscopic level is fully equiv-
alent to preservation of all symmetry properties on the
macroscopic level. This is easily seen considering the U(1)
symmetry related to microscopic particle-antiparticle for-
mation: since the microscopic mechanisms produce equal
number of particles and antiparticles (pair production),
initial particle-antiparticle number difference is exactly
preserved in the macroscopic many body state.

Thus only presence of a nonabelian symmetry poses a
true challenge. A suitable mathematical method how to
approach this problem is identified considering the previ-
ously treated statistical equilibrium case. Here one decom-
poses a general ‘macrostate’ consisting of many particles
into possible irreducible representations of the symmetry
group. Then a projection technique exploiting character
function properties of the group is used to constrain the
final state. We will here use this approach in order to de-
scribe multiparticle evolution applying microscopic kinetic
theory scheme. We will show that the behaviour of particle
phase - space distribution functions will depend not only
on properties of basic interaction, but that it also depends
on global properties of the macroscopic system. Those
global properties provide subsidiary constraints needed,
so that the asymptotic equilibrium state has properties
consistent with the non-abelian constraints.

2 The projection method

Let G be a compact internal symmetry group of our sys-
tem consisting of particles (objects) transforming under
irreducible representations of the symmetry group. These
representation are denoted as αi with corresponding di-
mensions d(αi). One denotes f (αi,νi)

(ζ) (Γ, r, t) a distribution
function of the particle which belongs to the multiplet
αi of the symmetry group. Members of this multiplet are
numbered by indexes νi (νi = 1, . . . , d(αi)) which corre-
spond to given values of charges related to the symme-
try group. A subscript ζ denotes other quantum numbers
characterizing different multiplets of the same representa-
tion α. The variables (Γ, r) denotes a set of the phase -
space variables such as (p, r) and t is time.

The number of particles of the specie {α, να; ζ} is:

N
(α)
να;(ζ)(t) =

∫
dV dΓf

(α,να)
(ζ) (Γ, r, t) ; (1)

We consider a system of {N (ζ1)
α1,να1

(t), . . . , N (ζn)
αn,ναn

(t)} par-
ticles at time t. The distribution functions fulfill the gen-
eralized Vlasov - Boltzmann kinetic equations, which can
be written in the general form:

∂f
(αi,νi)
(ζi)

(Γi, r, t)

∂t
+ v · ∇f

(αi,νi)
(ζi)

(Γi, r, t)

=
∑

αj ,αk,αl

∑
νj ,νk,νl

∑
ζj ,ζk,ζl

∫
dΓjdΓkdΓl W(ζi,ζj ;ζk,ζl)

νiνj ;νkνl

×(Γk, Γl;Γj , Γi)

[
F (αi,νi)

(ζi)
(Γi, r, t)F (αj ,νj)

(ζj)
(Γj , r, t)

×f
(αk,νk)
(ζk) (Γk, r, t)f

(αl,νl)
(ζl)

(Γl, r, t) − F (αk,νk)
(ζk) (Γk, r, t)

×F (αl,νl)
(ζl)

(Γl, r, t)f
(αi,νi)
(ζi)

(Γi, r, t)f
(αj ,νj)
(ζj)

(Γj , r, t)

]
; (2)

Factors F (α,ν)
(ζ) (Γ, r, t) are related to quantum statistics

and they are equal to 1 for classical particles, and equal
to [1±f

(α,ν)
(ζ) (Γ, r, t)] for bosons/fermions correspondingly.

Since by assumption the whole system transforms under
given representation Λ of an exact symmetry group, the
system under consideration must preserve its transforma-
tions properties during its time evolution, provided that
it is governed by a symmetry invariant interaction.

We now focus on the case of a quantum system and
consider state vectors in particle number representation:∣∣∣N (α1)

να1
, . . . , N

(αn)
ναn

〉
. These vectors describe symmetry

properties of our systems and all other variables, related to
phase-space properties of the system are suppressed here.
They transform as a direct product representation of the
symmetry group G. This representation is of the form:

αN(α1)

1 ⊗ αN(α2)

2 ⊗ · · · ⊗ αN(αn)

n ; (3)

A multiplicity N (αj) of the representation αj in this prod-
uct is equal to a number of particles which transform un-
der this representation:

N (αj) =
∑

j

∑
ζj

N
(αj)
ναj

;(ζj)

 =
∑

j

N (αj)
ναj

; (4)

The representation given by (3) can be decomposed into
direct sum of irreducible representations Λk. Correspond-
ing states are denoted as |Λk, λΛk

;N〉 where λΛk
is an

index numbering members of the representation Λ and N
is a total number of particles

N =
∑

k

N (αk)
ναk

; (5)
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Each physical state can be decomposed into irreducible
representation base states with amplitudes depending on
phase space variables Γ :∣∣∣N (α1)

να1
, . . . , N (αn)

ναn
;Γ

〉
(6)

=
∑

k

⊕ ∑
ξΛk

⊕ |Λk, λΛk
;N ; ξΛk

〉 aΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

}(ξΛk
;Γ ) ;

Here appear new variables ξΛ which are degeneracy pa-
rameters required for the full description of a state in the
“symmetry space”.

Let us define an average weight

PΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

} (7)

=

∑
ξΛ

|aΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

}(ξΛ;Γ )|2∑
N

(α1)
να1

+···+ N
(αn)
ναn

=N

∑
ξΛ

|aΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

}(ξΛ;Γ )|2 ;

This expression gives the probability that N
(α1)
να1

, . . . ,

N
(αn)
ναn

particles transforming under the symmetry group
representations α1, . . . , αn combine into N particle state
transforming under representation Λ of the symmetry
group.

We make the statistical hypothesis that average
weights (7) do not depend on phase - space variables and
can be calculated alone on basis of symmetry group con-
sideration. This also can be proved under the stronger
assumption that in (6) any state with fixed Λ, λΛ has the
same weight (see e.g. [3])

Let us consider a projection operator PΛ on the sub-
space spanned by all states transforming under represen-
tation Λ.

PΛ
∣∣∣N (α1)

να1
, . . . , N (αn)

ναn

〉
=

∑
ξΛ

⊕ |Λ, λΛ; ξΛ〉 CΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

}(ξΛ) ; (8)

This operator has the generic form (see e.g. [15]):

PΛ = d(Λ)
∫
G

dµ(g)χ̄(Λ)(g)U(g) ; (9)

Here χ(Λ) is the character of the representation Λ, dµ(g)
is the invariant Haar measure on the group, and U(g) is
an operator transforming a state under consideration. We
will use the matrix representation:

U(g)
∣∣∣N (α1)

να1
, . . . , N (αn)

ναn

〉
=

∑
ν
(1)
1 ,...,ν

(Nνn )
n

D
(α1)

ν
(1)
1 ν1

· · ·D(α1)

ν
(Nν1 )
1 ν1

· · ·D(αn)

ν
(1)
n νn

· · ·D(αn)

ν
(Nνn )
n νn∣∣∣N (α1)

να1
, . . . , N (αn)

ναn

〉
; (10)

D
(αn)
ν,ν is a matrix elements of the group element g corre-

sponding to the representation α. Notation convention in

(10) arises since there are N
(αj)
ναj

states transforming un-
der representation αj and having quantum numbers of the
ναj

-th member of a given multiplet.
The statistical hypothesis identifies the average weight

PΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

} with a norm of the vector

PΛ
∣∣∣N (α1)

να1
, . . . , N

(αn)
ναn

〉
. This norm can be written as〈

N (α1)
να1

, · · · , N (αn)
ναn

∣∣∣ PΛ
∣∣∣N (α1)

να1
, . . . , N (αn)

ναn

〉
=

∑
ξΛ

|CΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

}(ξΛ)|2 ; (11)

where the relation (PΛ)2 = PΛ was used.
Left hand side of this equation can be calculated di-

rectly from (9) and (10). One gets finally

PΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

} = A{N}d(Λ)
∫
G

dµ(g)χ̄(Λ)(g)

×[D(α1)
ν1ν1

]N
(α1)
να1 · · · [D(αn)

νnνn
]N

(αn)
ναn ; (12)

where A{N} is a permutation normalization factor. For
particles of the kind {α; ζ} we included in (12) the per-
mutation factor:

Aα
(ζ) =

N
(α)
(ζ) !∏

να

N
(α)
να;(ζ)!

; (13)

The permutation factor A{N} is a product of all “partial”
factors

A{N} =
∏
j

∏
ζj

Aαj

(ζj)
; (14)

The permutation factor assures the normalization of state
vectors:〈

N (α1)
να1

, · · · , N (αn)
ναn

∣∣∣ N (α1)
να1

, . . . , N (αn)
ναn

〉
= A{N} ; (15)

This normalization reflects an invariance of the state vec-
tor with respect to permutations which shuffle indistin-
guishable particles.

3 Incorporation of symmetry

The expression (12) is a starting point for further consid-
erations. It provides together with (1) and (2) subsidiary
constraints on distribution functions f (αi,νi). These condi-
tions assure that in a dynamical evolution the symmetry
of the system is preserved. When symmetry is conserved,
then all weights in (12) are constant in time. In a case
of strong interaction and colour symmetry, all weights,
except for the weight corresponding to the singlet state,
must remain zero.

We now convert the global constraint into a time evo-
lution condition and consider:

d

dt
PΛ,λΛ

{N
(α1)
να1

,..., N
(αn)
ναn

} = 0 ; (16)
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Introducing here the result of (12) one obtains:

0 =
dA{N}

dt
d(Λ)

∫
G

dµ(g)χ̄(Λ)(g)[D(α1)
ν1ν1

]N
(α1)
να1 · · ·

· · · [D(αn)
νnνn

]N
(αn)
ναn +

n∑
j=1

∑
ναj

dN
(αj)
ναj

dt
A{N}d(Λ)

×
∫
G

dµ(g)χ̄(Λ)(g)[D(α1)
ν1ν1

]N
(α1)
να1 · · ·

· · · [D(αn)
νnνn

]N
(αn)
ναn log[D(αj)

νjνj
] ; (17)

All integrals which appear in (12) and (17) can be ex-
pressed explicitly in an analytic form for any compact
symmetry group.

To write an expression for the time derivative of the
normalization factor A{N} we perform analytic continua-
tion from integer to continuous values of variables N

(αn)
ναn

.
Thus we replace all factorials by the Γ–function of corre-
sponding arguments. We encounter here also the digamma
function ψ [16]:

ψ(x) =
d logΓ (x)

d x
; (18)

This allows to write for (17):

dA{N}

dt
= A{N} ∑

j

∑
ζj

dN
(αj)
(ζj)

dt
ψ(N (αj)

(ζj)
+ 1)

−
∑
ναj

dN
(αj)
ναj

;(ζj)

dt
ψ(N (αj)

να;(ζj)
+ 1)

 ; (19)

To get a consistent analytical continuation in the num-
ber of particles one should define the time derivatives
dN

(α)
να;(ζ)/dt. We define these rates of particle number

change from the integrated Boltzmann kinetic equation,
(2), explicitly

dN
(αi)
ναi

dt

=
∑

αj ,αk,αl

∑
νj ,νk,νl

∑
ζj ,ζk,ζl

∫
dV dΓjdΓkdΓldΓi W(ζi,ζj ;ζk,ζl)

νiνj ;νkνl

×(Γk, Γl;Γj , Γi)
[
F (αi,νi)

(ζi)
(Γi, r, t)F (αj ,νj)

(ζj)
(Γj , r, t)

×f
(αk,νk)
(ζk) (Γk, r, t)f

(αl,νl)
(ζl)

(Γl, r, t) − F (αk,νk)
(ζk) (Γk, r, t)

× F (αl,νl)
(ζl)

(Γl, r, t)f
(αi,νi)
(ζi)

(Γi, r, t)f
(αj ,νj)
(ζj)

(Γj , r, t)
]
;

(20)

Contributions from gradient terms of (2) vanish due to
Gauss law. These terms are transformed in surface inte-
grals and beyond the volume occupied by the system all
distribution functions are equal to zero.

Equations (17,19,20) in fact constitute the global sub-
sidiary condition which should be fulfilled by the micro-
scopic kinetic equations (2). These are the necessary con-
ditions for preserving the internal symmetry on the macro-
scopic level. Rates of change dN

(α)
να;(ζ)/dt are related to

“macrocurrents”, which are counterparts of “microcur-
rents” related directly to a symmetry on a microscopic
level via the Noether theorem. Equation (20) can be con-
sidered as a set of conditions on macrocurrents to pro-
vide consistency with the overall symmetry of the system.
Therefore we believe that this equation can also be used as
a starting point for multicomponent hydrodynamic equa-
tions with internal symmetry properties taken into ac-
count. One should notice that this subsidiary condition
takes into account also surface effects for the finite vol-
ume systems. This is due to the space variables integration
which is performed in (1) and (20).

One easily sees that for the case of abelian symmetry
the two constraints (12) and (17) do not lead to new re-
sults: first we recall that all irreducible representations of
abelian group are one-dimensional. Next, let basic parti-
cles have “charges” q1, . . . , qn, and let the global charge
be Q. Then the only consequence of (12) follows for non-
vanishing weight Q = N1q1+ · · ·+Nnqn, which is a rather
obvious result. New results appear only for nonabelian
symmetries.

4 Example: isospin

We now consider as an example the case of the SU(2) sym-
metry with basic particles transforming under spinor (1

2 )
(fundamental) and vector (1) (adjoint) representations.
This example can be realized by a gas mixture of nucle-
ons and pions. To describe all group elements the three
group’s parameters α, β, γ are chosen in such a way that
diagonal matrix elements have the well known form [15]:
i.) for the fundamental representation (1

2 ):

D(1/2)
mm (α, β, γ) = eim(α+γ) cos

β

2
; m = ±1

2
; (21)

ii.) and for the adjoint representation (1):

D
(1)
±1,±1(α, β, γ) =

1
2
e±im(α+γ)(1 + cosβ) ; (22)

D
(1)
0,0(α, β, γ) = cosβ ; (23)

The Haar measure for the SU(2) group in this para-
metrization has the form∫

dµ(g)f [g]

=
1

8π2

2π∫
0

dα

2π∫
0

dγ

π∫
0

dβ sinβf [g(α, β, γ)] ; (24)

Any ‘macrostate’ is made of an arbitrary number: nn,
np, n−, n0, n+; where subscripts refer to members of the
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fundamental representation neutrons, protons; and mem-
bers of adjoint representations, π−, π0, π+, correspond-
ingly. Let us consider the special case when the macrostate
is a SU(2) singlet. The weight of the singlet state is ac-
cording to (12):

P 0,0
{nn,np,n−,n0,n+}

= A{N} 1
8π2

2π∫
0

dα

2π∫
0

dγ

π∫
0

dβ

× sinβe− i
2 (nn−np+2n−−2n+)(α+γ) cosR

β

2
cosn0 β

≡ A{N}P̃ 0,0
{nn,np,n−,n0,n+} ; (25)

where
R = nn + np + 2n− + 2n+ ; (26)

The permutation normalization factor is here:

A{N} =
(n− + n0 + n+)!(nn + np)!

n−!n0!n+!nn!np!
; (27)

The real nonzero values of the weight is obtained only
when the argument of the exponent in (25) vanishes:

nn − np + 2n− − 2n+ = 0 ; (28)

This is equivalent to the conservation of the third compo-
nent of the isospin.

Novel behaviour is obtained only when one considers
time evolution of the system. Presence of an exact symme-
try means that the corresponding weight (12) is constant,
here we consider the expression:

d

dt
P 0,0

{nn,np,n−,n0,n+} = 0 ; (29)

We note that an appropriate analytical continuation
should be made. First we evaluate the integral appearing
in (25):

1
A{N}P

0,0
{nn,np,n−,n0,n+}

= (−1)n0

n0∑
i=0

(−2)i
(
n0

i

)
1

R + 1 + i
; (30)

This discrete form is not allowing an analytic continu-
ation which would allow for all necessary differentiations.
However, we can write the integral also as the hypergeo-
metric 2F1 function [16]:

1
A{N}P

0,0
{nn,np,n−,n0,n+}

= (−1)n0
1

R + 1 2F1(−n0,R + 1,R + 2; 2) ; (31)

where R is as defined in (26). We so obtain:

P 0,0
{nn,np,n−,n0,n+}

=
Γ (n− + n0 + n+ + 1)Γ (nn + np + 1)

Γ (n− + 1)Γ (n0 + 1)Γ (n+ + 1)Γ (nn + 1)Γ (np + 1)

× cosn0π

Γ (−n0)

∞∑
i=0

Γ (−n0 + i)
R + 1 + i

2i

i!
; (32)

Equations (25), (29) and (32), together with the condition
(28) result in:

0 = 2
∂P̃ 0,0

{nn,np,n−,n0,n+}
∂R

(
dnn

dt
+ 2

dn−
dt

)

+
∂P̃ 0,0

{nn,np,n−,n0,n+}
∂n0

dn0

dt

+
d logA(N )

dt
P̃ 0,0

{nn,np,n−,n0,n+} ; (33)

The projection integrals determine the coefficients which
are, explicitly:

∂P̃ 0,0
{nn,np,n−,n0,n+}

∂n0

= −π
sinn0π

Γ (−n0)

∞∑
i=0

Γ (−n0 + i)
R + 1 + i

2i

i!

+
cosn0π

Γ (−n0)

∞∑
i=0

Γ (−n0 + i)[ψ(−n0) − ψ(−n0 + i)]
R + 1 + i

2i

i!

= (−1)n0

n0∑
i=1

(
n0

i

)
[ψ(1 + n0) − ψ(1 + n0 − i)]

R + 1 + i
(−2)i ;

×
∂P̃ 0,0

{nn,np,n−,n0,n+}
∂R

= (−1)n0+1
n0∑
i=0

(−2)i
(
n0

i

)
1

(R + 1 + i)2
; (34)

and

d logA(N )

dt
=

dnn

dt
[ψ(nN + 1) − ψ(nn + 1)]

+
dnp

dt
[ψ(nN + 1) − ψ(np + 1)]

+
dn−
dt

[ψ(nπ + 1) − ψ(n− + 1)]

+
dn0

dt
[ψ(nπ + 1) − ψ(n0 + 1)]

+
dn+

dt
[ψ(nπ + 1) − ψ(n+ + 1)] ; (35)

where nN = nn + np is the total number of nucleons and
nπ = n− +n0 +n+ is the total number of pions. Equation
(35) can be also written in the form:

d logA(N )

dt

=
dnn

dt

nN∑
k=1+nn

1
k
+

dnp

dt

nN∑
k=1+np

1
k

(36)

+
dn−
dt

nπ∑
k=1+n−

1
k
+

dn0

dt

nπ∑
k=1+n0

1
k
+

dn+

dt

nπ∑
k=1+n+

1
k
;

Equations (33–36) offer the final result for the SU(2)
case. Notably, they imply a relation for the number of neu-
tral pions in a system. We thus see, that when the case of
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the non-abelian symmetry is carefully considered and not
ignored, one can get relations determining also the ‘neu-
tral’ members of multiplets. In the standard approach the
multiplicity of neutral particles is obtained by introducing
a subsidiary chemical potential which is related to the lack
of chemical equilibrium of a system [17] or to the residual
interaction with the environment [18].

5 Conclusions and outlook

We have shown how constraints due to the preservation
of the symmetry properties of a multiparticle macroscopic
state define the path of evolution of the system. One
should notice that results we presented are general and
do not depend on the particular choice of the represen-
tation of the symmetry group. For different initial sym-
metry group representations one gets different paths, but
they are all of a similar “shape”, considering the hypothe-
sis that the global behaviour of a macrosystem (in a sense
of statistical physics) should not be altered if a number
of particles is changed by a very small (“microscopic”)
amount.

We have explicitly presented the example how our con-
straint works in the simplest non - trivial case of SU(2)
symmetry group.

Although we have studied and implemented the dis-
creet symmetry using quantum states, whenever we re-
ferred here to a dynamical equation we considered the
limit of incoherent state evolution described by the Boltz-
mann equation. The dynamical evolution we consider thus
is described in terms of diagonal density matrix. This is
the appropriate approach given that our main objective is
to arrive at a dynamical derivation of symmetry deformed
statistical distribution.

We recall that quantum correlations (without symme-
try) alone are responsible for the deformation of the Boltz-
mann distribution into Bose/Fermi distributions, and that
the Boltzmann equation yields this result when we al-
low for Fermi blocking/Bose enhancement in the collision
term. In that line of thought, the next step would be to
show that it is possible to obtain now within a dynamical

Boltzmann equation calculation the evolution of a many
body system into symmetry-deformed statistical equilib-
rium distribution. We are also exploring the possibility
that the methods here presented allow the formulation of
a microscopic transport theory which would obey the long
range correlations introduced by the macroscopic quan-
tum and symmetry constraints.
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